Sunday, March 30, 2014

THERMODYNAMICS

    1. Mechanical Work
      W = - Pext (ΔV) [during expansion]
    2. First Law of Thermodynamics
      ΔE = q + W
      ΔE = q - PΔV
    3. Adiabatic Change
    4. Isochoric Change
      ΔV = 0
      W = PΔV = 0
      ΔE = q + W = q
    5. Cyclic Change (reversible)
      ΔE = 0
      q = -W = PΔV
      q = -Wmax = P∫dV
    6. Isothermal reversible Expansion
      ΔH = ΔE = 0 (internal energy is a function of temperature)
      q = -Wmax = 2.303 nRT log( V2 / V1) = 2.303 nRT log( P1 / P2)
      ΔH = ΔE + ΔngRT
    7. Joule - Thompson coefficient 

      (i) For cooling , u > 0 (-ve sign)
      (ii)For heating , u < 0 (+ve sign)
    8. Second Law of Thermodynamics 
      Efficiency of the Carnot engine = η = 
      q2 - q1q2
       = 
      T2 - T1T2
       = 1 - 
      T1T2

      q2 = heat absorbed by engine
      q1 = heat lost to sink
    9. Entropy Change 
      ΔStotal = ΔSsystem + ΔSsurrounding
      ΔSfusion = 
      ΔHfusionTfusion
       ; ΔSvapour = 
      ΔHvapourTvapour
    10. Gibb's Free Energy (G)
      ΔG = G2 - G1
      ΔG = ΔH - TΔS (Gibb's Helmholtz equation)
      ΔG < 0 (means spontaneous process)
      ΔG > 0 (means non-spontaneous process)
      ΔG = 0 (means system is at equilibrium)
    11. Kirchoff's Equation
      ΔH2 - ΔH1T2 - T1
       = ΔCp and 
      ΔE2 - ΔE1T2 - T1
       = ΔCv
      where , ΔCp = ∑Cp(products) - ∑Cp(reactants) and ΔC= ∑Cv(products) - ∑Cv(reactants)
    12. Degree of Dissociation (x)
      x = 
      D - dd
       = 
      Mt - MoMo

      where , D = theoretical V.D. and d = observed V.D.
    13. pH of a solution
      pH = -log[H3O+]
      pOH = -log[OH-]
      pH + pOH = pKW = 14
    14. Isothermal (reversible)
      ΔS = 2.303 nR log (V2 / V1)
      at constant pressure ,
      ΔS = 2.303 Cp log10 (T2 / T1)
      For vaporization ,
      ΔS = 
      ΔHvapTbp

      ΔGo = - nFE0cell
    15. Sign Convention
      • If work is done on the system , W is +ve.
      • If work is done by the system , W is -ve.
      • If heat is absorbed by the system , or ΔH is +ve.
      • If heat is given out by the system , q or ΔH is -ve.
      • If energy is absorbed by the system , i.e. internal energy increases , ΔE is +ve.
      • If energy is released i.e., internal energy of the system decreases , ΔE is -ve.
    16. Heat Capacity
      (i) Heat capacity at constant volume , CV = [ ∂E / ∂T ]V
      (ii) Heat capacity at constant pressure , Cp = [ ∂H / ∂T ]p
      For an ideal gas , Cp - Cv = R
    17. Heat of Reaction
      ΔH = ∑ H(p) - ∑ H(R)
      For exothermic reaction : ∑ H(p) < ∑ H(R) (∴ Δ is -ve)
      For endothermic reaction : ∑ H(p) > ∑ H(R) (∴ Δ is +ve)
      Heat change at constant pressure = qp = ΔH
      Heat change at constant volume = qv = ΔH
      ΔH = ΔU + PΔV
      ΔH = ΔU + Δn(g)RT
      If,
      Δn(g) = 0 , ΔH = ΔU
      Δn(g) > 0 , ΔH > ΔU
      Δn(g) < 0 , ΔH < ΔU
    18. Clausis - Clapeyron Equation

      where ΔHv = molar heat of vapourisation
      • Calorific Value is the amount of heat evolved when one gram of fuel as food is burnt in the presence of air or excess of oxygen.
      • Joule's Relationship between work done (w) and heat produced (H)
        W α H or W = JH
        where J = mechanical equivalent of heat ; J = 4.184 JCal-1
      • S1 and S2 are solubility at temperature T1 and T2 respectively

No comments:

Post a Comment