Sunday, March 30, 2014

STATES OF MATTER

    1. Boyle's Law 
      PV = constant [at constant n , T]     ∴ P1V1 = P2V2
    2. Charle's Law 
      VT
       = constant [at constant n , P]     ∴ 
      V1T1
       = 
      V2T2

      Vt = Vo ( 1 + t / 273 )     [T(kelvin = 273 + t(oC)]
    3. Gay-Lussac's Law 
      PT
       = constant [at constant n , V]     ∴ 
      P1T1
       = 
      P2T2
    4. Ideal Gas Eqaution 
      PVnT
       = R = 0.0821 l . atm . K-1 . mol-1
          = 1.987 Cal K-1 . mol-1 = 8.314 J K-1 . mol-1
      1 atm = 760 mm of Hg = 76 cm of Hg = 101325 pascal ; 1 bar = 0.9863 atm
      Satnadard Temperature and Pressure (STP) or Normal Temperature and Pressure (NTP)
      P = 1 atm , T = 0oC or 273 K
    5. Density and Molar Mass Relation 
      Density (D) = 
      PMRT
    6. Dalton's law of Partial Pressure 
      PTotal = P1 + P2 + P3 + .....
      where P1,P2,P3, .... etc are partial pressures of individual gases .
      Partial Pressure = Total pressure x mole function
      Relative humidity = 
      Partial pressure of water in airVapour pressure of water

      Vap. Pressure of dry gas = Vap. Pressure of wet gas - Vap. pressure of water vapour (aqu. Tension)
    7. Graham's Law (Diffusion and Effusion)
      (rA) Rate of effusion of gas A(rB) Rate of effusion of gas B
       = 
      ρBρA
       = 
      MBMA
       [at constant pressure]
      (rA) Rate of effusion of gas A(rB) Rate of effusion of gas B
       = 
      PAPB
       
      ρBρA
       = 
      PAPB
       
      MBMA
       [at different pressure]
    8. Velocity of Molecules 
    9. Real Gases , compressibility Factor
      Z = 
      PVnRT

      Z measures the extent of non - idealness of an ideal gas .
      Z < 1 , implies that gas is more compressible
      Z > 1 , implies that gas is less compressible
      Z = 1 , implies that gas is ideal
    10. Gas Equation (van der Waal's) 
    11. Nature of Gas Constant R 
      R = 
      PVnT
       = 
      Pressure x VolumeMoles x Degree(K)
       = 
      (Force / Area) x VolumeMoles x Degree(K)
       = 
      Force x LengthMoles x Degree(K)
       = Work Done per degree per mole
    12. Units of Gas constant (R)
      R = 0.0821 atm L K-1 mol-1 = 0.0821 atm dm3 K-1 mol-1
      (Here P = 1atm , V = 22.4 L , T = 273K , 1 L = 1 dm-1)

      If P is expressed in dynes per square centimeter (P = 76 x 981 x 13.6 dyne/cm2)
      V = 22400 dm3 and T = 273 K
      then R = 8.314 x 107 ergs K-1 mol-1 = 8.314 JK-1 mol-1 and R = 1.987 cal K-1 mol-1

      1 atm pressure = 0.76 m x 13.6 x 103 kg m-3 x9.81 ms-2 = 101.325 x 103 Nm-2 = 101.325 x 103 Pa
      1 Nm-2 = 1 Pa

      Thus , the gas constant R = 
      (101.325 x 103 Nm-2) x (22400 x 10-6m3)(273K) x (1 mol)
       = 8.314 x NmK-1 mol-1 = 5.189 x 1019 eVK-1 mol -1
      [ 1eV = 1.602 x 10-19 volts coulomb (Joule) ]
    13. Avogadro's Law
      V α n or V α N (at constant T,P)
    14. Calculation of Kinectic Energy
      Acoording to gas equation , Pv = 
      13
       Mu2 for 1 mole of gas
      or PV = 
      23
      12
       Mu2 for 1 mole of gas
      K.E. = 
      12
       = 
      32
      PV = 
      32
      RT
      For molecule , the KE = 
      32
      RTNo
       = 
      32
      KT
      K(Boltzman constant) = 
      RNo
    15. Average molecular weight of a gaseous mixture 
      Mmix = 
      Σ niMiΣ ni
       , where ni is the number of moles and Mi is the molecular weight of the component.
    16. Critical Pressure (PC
      a27b2
    17. Critical Temperature (TC
      8a27Rb
    18. Critical Volume (VC= 3b
    19. Relation between PC , VC and TC : 
      PCVCRTC
       = 
      38
    20. Boyle's Temperature (TB
      abR

No comments:

Post a Comment